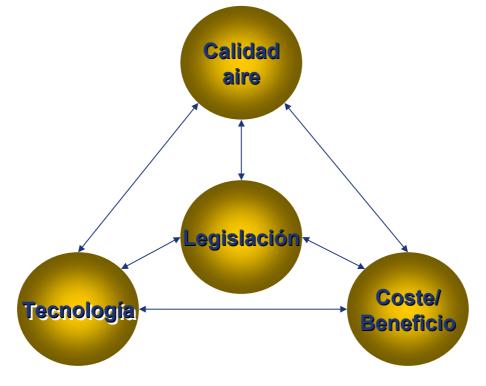


Biocombustibles y combustibles convencionales

Dirección deTecnología, Repsol YPF

Real Academia de Ingeniería Madrid 7 marzo 2006

Programas Auto Oil, un cambio sustancial



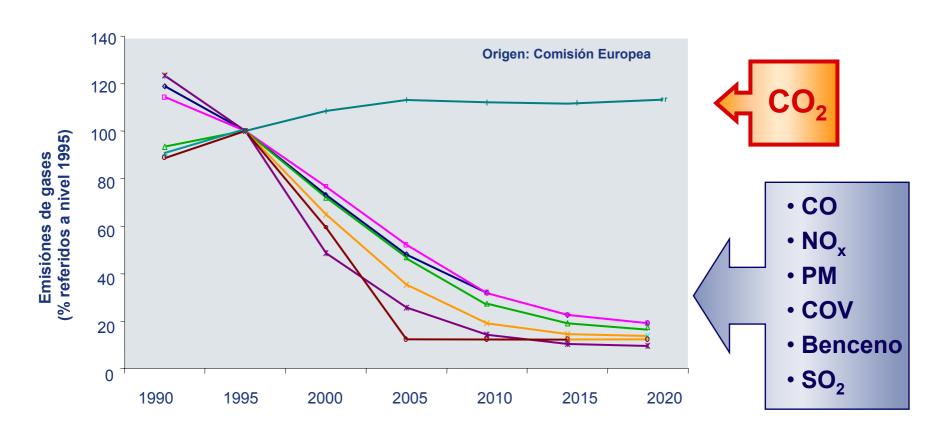
A principios de los años 90 se introduce un cambio crucial en la filosofía del proceso legislativo

 Planteamiento global e integrado para seleccionar las soluciones más rentables de cara a obtener un determinado nivel de calidad del aire

Fabricantes de vehículos, empresas petroleras y la Administración europea trabajan

juntos

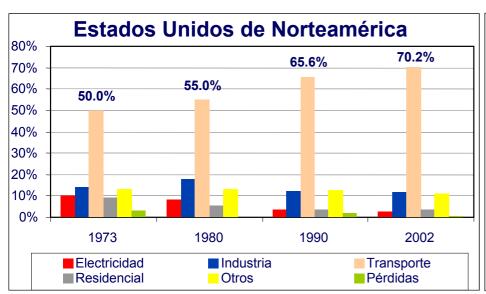
Programa Auto Oil Calidad del aire y

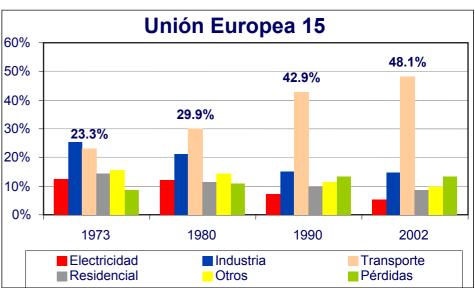


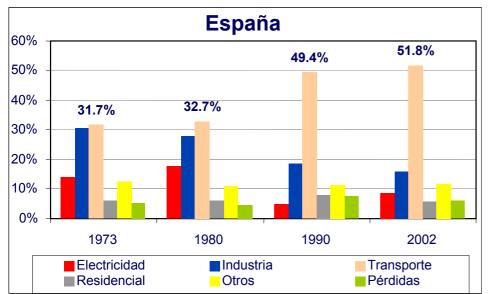
Contaminante	NO ₂ (zonas urbanas)	CO (zonas urbanas)	Benceno (zonas urbanas)	Partículas (zonas urbanas)	Ozono troposférico
Objetivos de calidad del aire	200 μg/m³ Valor max. durante 1 h	10 mg/m³ Valor max. durante 1 h	10 μg/m³ Media anual	50 μg/m³ Media diaria	180 μg/m³ Valor del percentil 99 en 1 h

Parámetro	Unidad	2000	2005				
				Parámetro	Unidad	2000	2005
Densidad	kg/m³	720 –775	720 – 775	Número de		51 min	51 min
Olefinas	% v/v	18 max	18 max	cetano			
Aromáticos	% v/v	42 max	35 max	Densidad	kg/m³	820 – 845	820 – 845
Benceno	% v/v	1 max	1 max	PAH (di+tri)	% m/m	11 max	11 max
Oxígeno	% m/m	2,7 max	2,7 max	T95	° C	360 max	360 max
Azufre	Ppm	150 max	50 max				
			10 max	Azufre	ppm	350 max	50 max
			(2008)				10 max (2009)

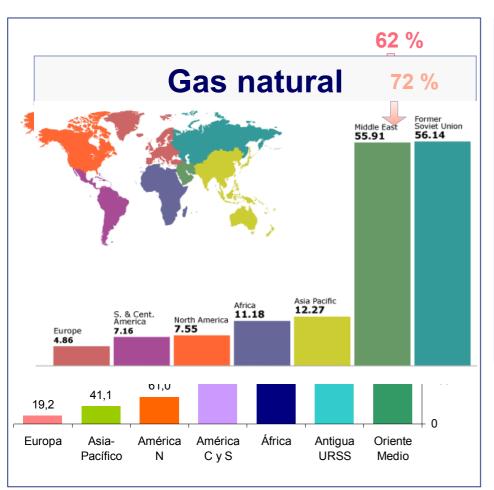
Los efectos del AUTOOIL. Las emisiones contaminantes producidas por el transporte






- ✓ Las emisiónes de gases de contaminante "locales" se han reducido más de un 98 % desde los 70, y se reducirán aún mas con los futuros desarrollos y mejoras del conjunto "vehículo + combustible": un aire urbano más limpio
- ✓ Sin embargo: las emisiones de CO₂ no se reducen (incremento de la movilidad), con grave impacto sobre el cambio climático

La Disponibilidad y Seguridad del suministro energético (y2)



- ✓ Una proporción creciente del petróleo se utiliza para el transporte
- Casi el 100% de los carburantes de automoción proceden del petróleo

La Disponibilidad y Seguridad del suministro energético (1..)

Localización de las reservas de petróleo a fin de 2004

Fuente: BP	Statistical	Review of	World	Energy 2005
-------------------	--------------------	------------------	-------	-------------

Zona	Reservas (millardos de barriles)	Porcentaje (%)
Oriente Próximo (Arabia Saudí)	733,9 (262,7)	61,7 (22,1)
Antigua URSS	120,0	10,1
Europa	19,2	1,6
Asia-Pacífico	41,1	3,5
África	112,2	9,4
Norteamérica	61,0	5,1
Centroamérica y Suramérica	101,2	8,5
TOTAL	1188,6	100,0

- Paises pertenecientes a la OPEP: 78%
 (Organización de Países Exportadores de Petróleo: Arabia Saudí, Argelia, Emiratos Árabes Unidos, Indonesia, Irak, Irán, Kuwait, Libia, Nigeria, Qatar, Venezuela)
- XVIII Congreso Mundial del Petróleo (sept. 2005)
 Arabia Saudí eleva los cálculos de las reservas de crudo a 464.000 millones de barriles

¿Cómo se resuelve el problema?

Bases

- Aseguramiento de la disponibilidad energética
 - Agotamiento de las reservas de petróleo
 Garantía de producción hasta el año 2044 (fuente BP)
 - Previsible incremento de demanda energética frente a las reservas de crudo
 - Recursos convencionales en áreas geopolíticamente inestables
- Amenaza medioambiental
 - Reducción de emisiones de gases de efecto invernadero
 - Reducción de emisiones contaminantes

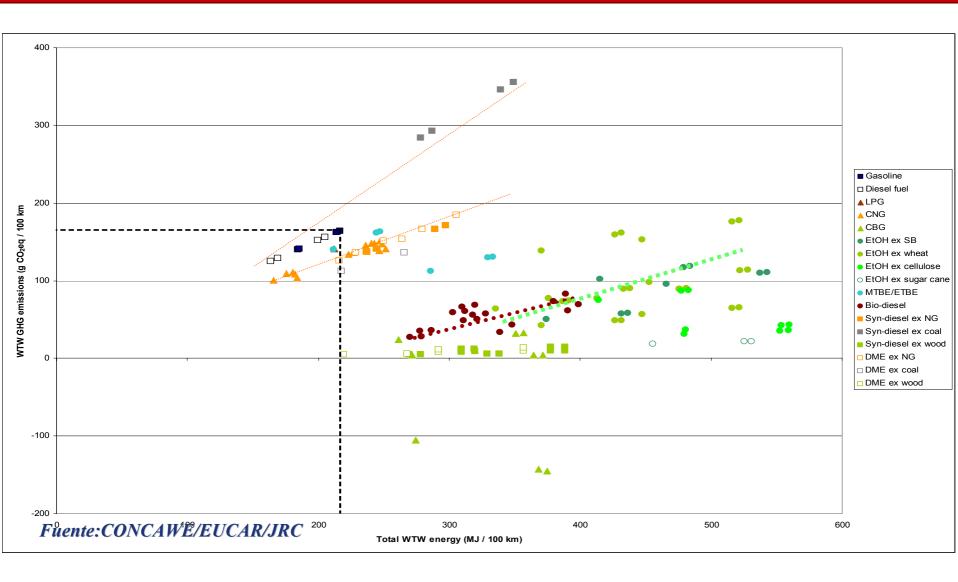
Consecuencias

- Necesidad de incorporar decididamente carburantes alternativos
 - No necesariamente, aunque si preferiblemente, renovables debido al problema de cambio climático ..o sea BIOCOMBUSTIBLES

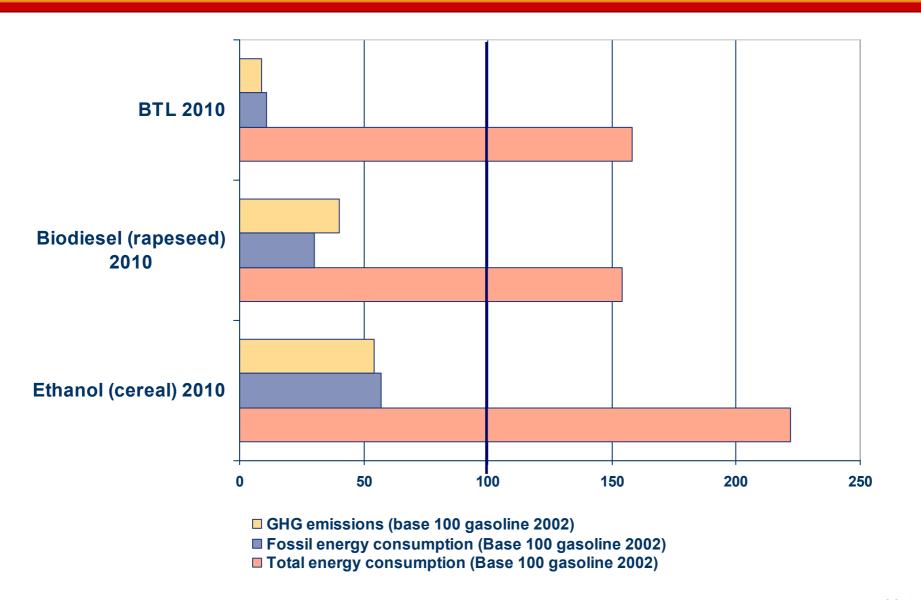
Los biocombustibles hoy: reflexiones iniciales

- ✓ Hoy los biocombustibles son más caros que los productos petrolíferos en cualquier escenario de precio sostenido del petróleo concebible a efectos de toma de decisión de invertir
 - Se necesita un marco estable de incentivos fiscales durante el ciclo de vida de las plantas de producción
- ✓ En consecuencia, los biocombustibles deben ofrecer otros beneficios para la sociedad en relación con los productos del petróleo
 - Reducción de emisiones globales de CO2
 - Contribución a la seguridad del suministro energético: reducción de importaciones de petróleo y sus derivados, diversificación de fuentes de energía
 - (Contribución a una agricultura sostenible)
- ✓ Otros factores deben ser considerados más como "requisitos básicos" que vectores de desarrollo
 - Calidad del producto comparable a la de los derivados del petróleo
 - Compatibilidad con la infraestructura de distribución de combustibles y con los vehículos existentes
 - Bajas emisiones contaminantes de escape

Implantación de los biocombustibles de hoy



	Bioetanol vía ETBE	Bioetanol-gasolina mezcla	Biodiesel
			\odot
	\odot		<u>:</u>
	\odot		<u>:</u>
Posición de las industrias europeas automovilística y petrolera	\odot		
		<u>:</u>	\odot
Potencial de reducción deCO2	\odot	\odot	<u></u>


Las emisiones de Gases de efecto invernadero REPJOL

Eficiencia energética y CO2: análisis de ciclo de vida

Fomento del uso de carburantes alternativos

En el 2020, la UE quiere que el 23 % de la energía de los combustibles para el transporte por carretera sea de origen alternativo (1)

Año	Biocarburantes (%)	Gas Natural (%)	Hidrógeno (%)	Total (%)
2005	2			2
2010	5,75	2		7,75
2015	7	5	2	14
2020	8	10	5	23

⁽¹⁾ COM(2001)547 Comunicación relativa a los combustibles alternativos para el transporte por carretera y a un conjunto de medidas para promover el uso de biocarburantes (noviembre 2001)_{- 12} -

Biocarburantes

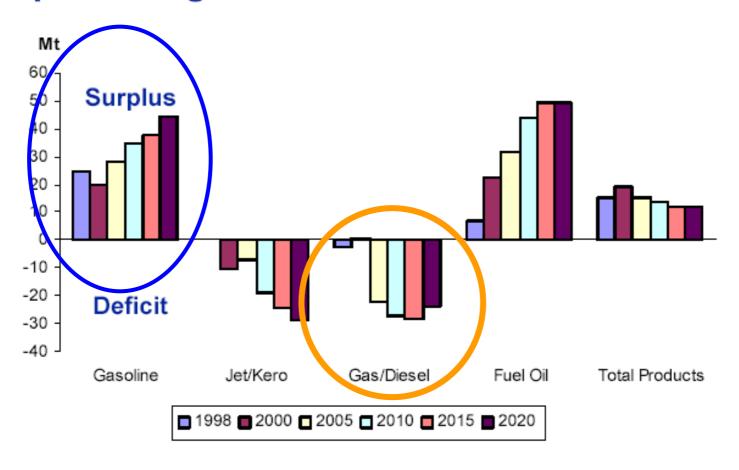
Las especificaciones actuales no permiten cumplir objetivos de biocarburantes

Compuesto	Límite especificación (EN228 o EN590 según caso)	Objetivo 2010
Etanol	5 % vol = 3,3 % energía	5,75 % energía = 8,8 % vol
FAME	5 % vol = 4,6 % energía	5,75 % energía = 6,3 % vol

Cálculos realizados con los siguientes valores:

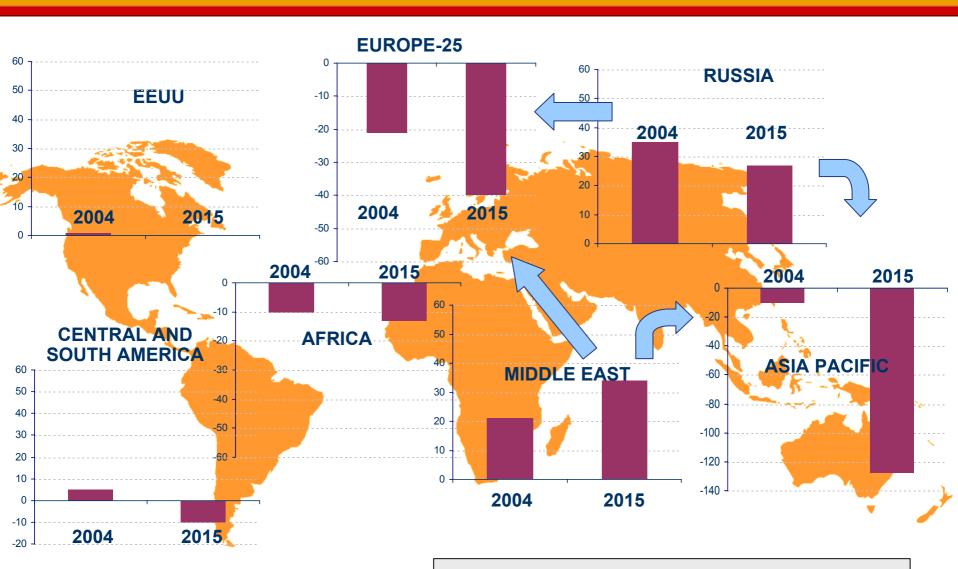
Compuesto	Densidad (kg/dm³)	Poder Calorífico Inferior (MJ/kg)	Poder Calorífico Inferior (MJ/dm³)
Gasolina	0,75	43,5	32,6
Gasóleo	0,83	43,2	35,9
Etanol	0,79	26,8	21,2
FAME	0,88	37,1	32,7

Disponibilidad limitada de materias primas en la UE



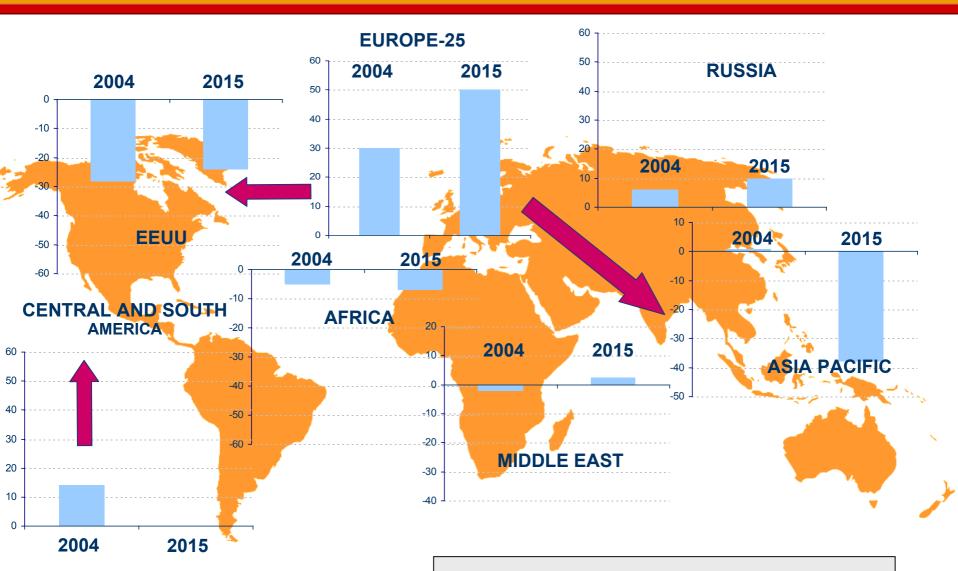
- ✓ La consecución del objetivo de la Directiva Europea de biocombustibles (5,75% equivalente energético) exige un aumento de la disponibilidad de materias primas agrícolas
 - Bioetanol para gasolina: 25,5 M t/a cereal (1,5% producción mundial)
 - Biodiesel para gasoil auto: 36,4 M t/a oleaginosas (10% producción mundial)
- ✓ Una parte importante de estas materias primas deberán importarse
 - En 2012 la UE-25 se prevé exporte 15 M t/a de cereal (sin biocombustibles)
 - * Aunque cambios previsibles en la PAC liberaría más superficie cultivable
 - La UE ya importa el 50% de sus necesidades de oleaginosas
- ✓ El impacto en los mercados mundiales de cereales y oleaginosas será significativo
 - Otros mercados también afectados: alimentación animal, glicerina

Fuente: DGAGRI (CE), Concawe/Eucar/JRC


European Long Term Product Balances

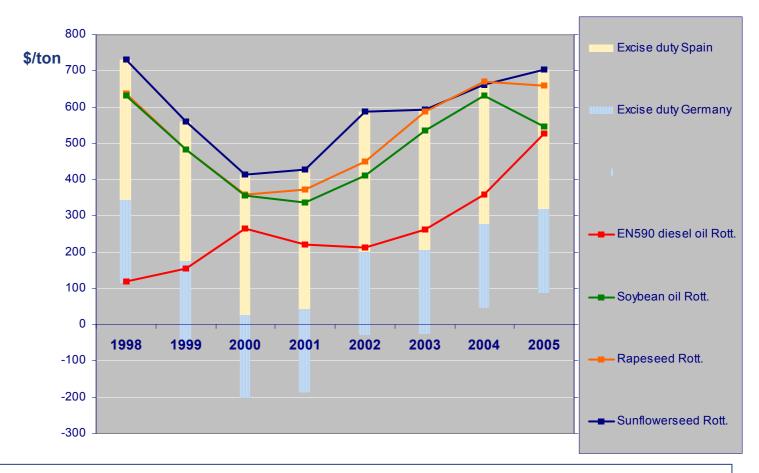
Fuente: ERTC 2003: The Outlook for European Refining. WOOD MACKENZIE

El biodiesel contribuye a reducir las importaciones en la UE



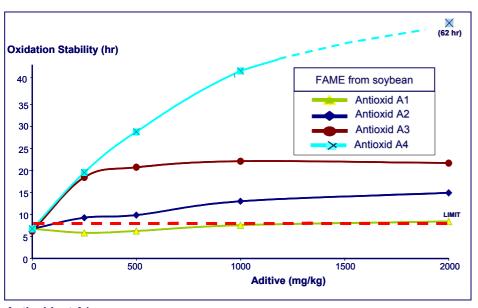
Cifras en millones ton/año Fuente: IEA, Wood Mackenzie, Repsol YPF **BALANCE NETO DE GASOIL AUTO EN EL MUNDO**

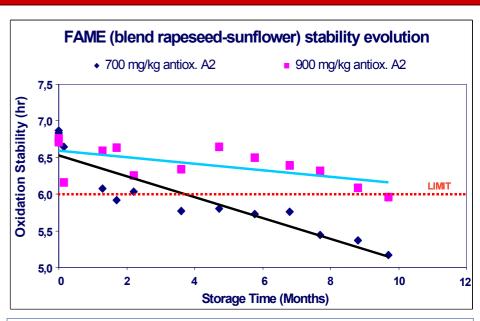
El bioetanol no contribuye a reducir importaciones en REPSOL la UE como lo hace en EEUU



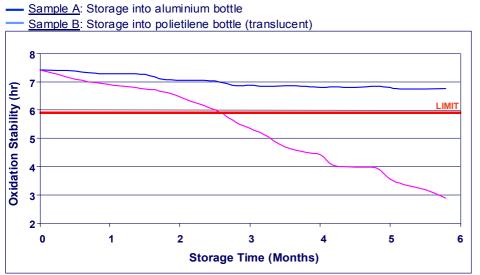
Cifras en millones ton/año Fuente: IEA, Wood Mackenzie, Repsol YPF **BALANCE NETO DE GASOLINAS EN EL MUNDO**

Costes e incentivos fiscales: el caso del biodiesel





- ✓ La materia prima es más cara que el producto. La CE estima que el precio de indiferencia del petróleo es de 60 \$/B para biodiesel y 90 \$/B para bioetanol
- ✓ El diferencial de precios materia prima producto es extremadamente volátil
- ✓ Las diferencias de incentivos fiscales pueden ser determinantes


Biodiesel: la calidad como requisito básico

Antioxidant A1

La degradabilidad del biodiesel depende de diversos factores:

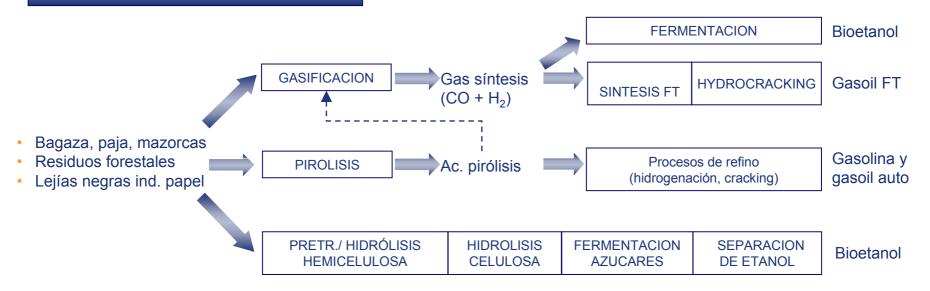
- Tipo de materia prima
- Tiempo de almacenamiento
- Luz solar
- Tipo y dosis de antioxidante

La siguiente generación de biocombustibles

- ✓ Tecnologías hoy emergentes de producción de biocombustibles pueden cambiar el panorama acabado de describir si consiguieran reducir sustancialmente los costes de producción...
 - A partir de materias primas más baratas y abundantes
- ...sigan ofreciendo otros beneficios a la sociedad en relación a los derivados del petróleo
 - Reducción de CO2
 - Reducción de dependencia del petróleo y sus derivados
- ... y cumplan con los "requisitos básicos"
 - Calidad de producto
 - Compatibilidad con infraestructuras y vehículos existentes
 - Bajas emisiones contaminantes de escape

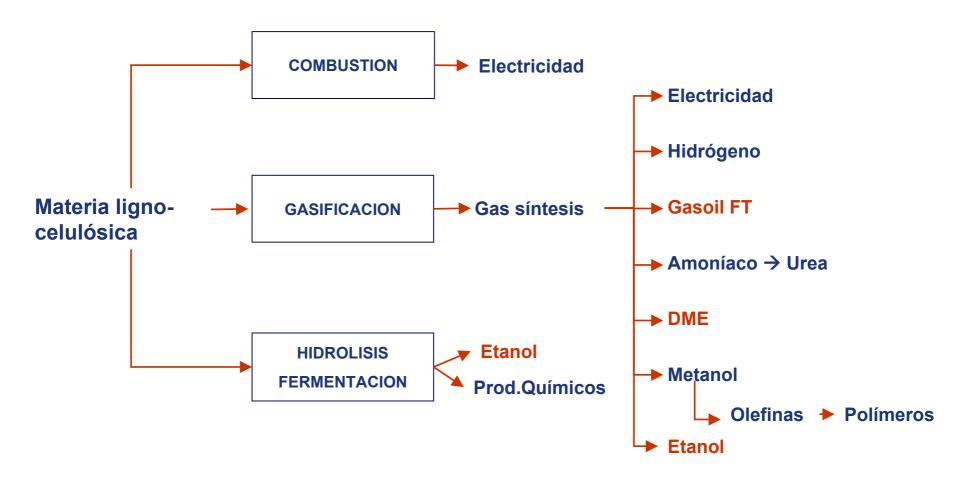
Vías para la siguiente generación de biocombustibles

PURIFICACION



Aceites y grasas de bajo coste

- Aceites más baratos
- Aceites usados
- Grasas animales



Materia ligno-celulósica

Y existen otros productos posibles no solo biocombustibles YPF

Una nueva y complicada estrategia de biocombustibles en la UE

- ✓ Estrategia de biocombustibles como parte de una estrategia más amplia de fomento de la biomasa
- ✓ Con elementos de política agrícola teniendo en cuenta las drásticas modificaciones previstas de la actual PAC
- ✓ Contempla importaciones de materias primas y biocombustibles como parte de programas de colaboración internacional con países en desarrollo
- ✓ Incentivos económicos en función de los beneficios demostrables que ofrezca cada tipo de biocombustible para promover los biocombustibles de 2ª generación
- ✓ Posibilidad de hacer obligatorio un % de biocombustibles y modificar el esquema actual de desgravaciones fiscales (certificaciones-créditos)

Iniciativas de Repsol YPF

✓ Nº1 europeo en uso de etanol para gasolinas

- Vía ETBE
- 150,000 ton/año de bioetanol

✓ La siguiente apuesta para 2010 es el biodiesel

- Más de 1,000,000 ton/año en España
- Hasta 300,000 ton/año en Argentina

Biodiesel

Soja

Colza

✓ Un programa continuado de I+D

- Foco hasta ahora en asegurar las calidad de nuestras mezclas de biocombustibles con derivados del petróleo
- Salto cualitativo como líder de una propuesta de programa español de I+D sobre biodiesel:
 - 22 millones € 2006-2009, co-financiable con fondos CENIT del CDTI
 - 15 empresas y 23 centros de I+D participantes